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ABSTRACT
Determining the electron density is a challenging task in solar corona studies, as it requires certain assumptions to be
made, such as symmetric, homogeneous and radial distribution, thermal equilibrium, etc. In such studies, the observed
𝐾 corona brightness is based on the coronal electron density. An important paper on the calculation of electron density
was published in 1950 by van de Hulst in an article titled “The Electron Density of the Solar Corona”. The author
developed a method with some assumptions to calculate the electron density from the observed 𝐾 corona brightness.
We presented here, a new simplified calculation method for the coronal electron density is presented. The integral
equation solution given by van de Hulst is interpreted from a different perspective and the 𝐾 coronal electron density is
calculated using only observational data without making any additional adjustments such as successive approximations
and multiple attempts.

Keywords: Sun: corona – scattering – polarization, Astrometry and celestial mechanics: eclipses

1. INTRODUCTION

Theoretical studies on the solar corona began with a published article by Schuster (1879). This work
investigated the brightness and polarisation of the solar corona with regards to various particle distributions
within the corona. The majority of the fundamental mathematical issues were resolved with the explanations
provided here. According to this, the corona light is the composite of all the light scattered by the free
electrons in the line of sight direction. The polarisation of the corona light results from this phenomenon.
Minnaert (1930) further developed Schuster’s theory by taking into account the limb darkening effect of the
observed solar disc. Additionally, the equations for the relation between electron density and brightness were
provided. Baumbach (1937, 1938) introduced the first general formula for the electron density of the solar
corona from photometric observations as a function of the solar radius;

𝑁 (𝑟) = 108

(
0.036
𝑟1.5 + 1.55

𝑟6 + 2.99
𝑟16

)
(1)

where 𝑁 is the electron density in cm3, and 𝑟 is the distance from the solar disc expressed in solar radius.
Subsequently, corona light intensity was analysed by Allen (1946) and van de Hulst (1950) according to
the minimum and maximum phases of the solar cycle. They provided two distinct corona models. The
type of corona during cycle maximum exhibits nearly spherical brightness distribution, and most coronal
structures show a symmetric arrangement across the solar disc (see Figure 1, right panel). In contrast, the
type of corona during cycle minimum exhibits a concentration of coronal structures in the equatorial and
polar regions (Figure 1, left panel) and features with asymmetric brightness distribution. Furthermore, Saito
et al. (1970) developed an empirical function of the electron density which also depends on the heliographic
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Figure 1. Appearance of the solar corona according to solar cycle phase. Left: minimum phase (on 4 October 1995), Right: maximum phase (on 21
June 2001).

latitude as follows;

𝑁e(𝑟, ϕ) =
3.09 × 108

𝑟16
(
1 − 0.5 sin ϕ

)
+ 1.58 × 108

r6
(
1 − 0.95 sin ϕ

)
+ 0.0251 × 108

𝑟2.5
(
1 − 1.0 sin0.5 ϕ

) (2)

where 𝑁e is the electron density in cm3 and 𝜙 is the heliographic latitude. The equation allows us to compute
the electron density asymmetrically across the solar disc. It is thus possible to use this equation to represent
changes in coronal brightness based on corona type during solar minimum or maximum by adjusting the
sin𝜙 coefficients (see Appendix B for details).

A dataset of corona brightness from eclipse observations is typically necessary to develop the formulas
presented above. In order to achieve the most accurate results, intricate computations and various approaches
are necessary. For instance, the outcomes of the method, which are outlined in the following section, were
obtained through successive approximations and extensive trials, each time improving the computations
slightly. Similarly, another approach, which incorporates van de Hulst’s model, was devised by von Klüber
(1958). This article derives the 𝐾 corona luminance and the corona electron density through the assumption
that the polarization arises from 𝐾 corona light and that 𝐹 corona light is unpolarized. Consequently, the
subsequent equation was formulated as

𝐾 𝑃K = 𝑃K+F(𝐾 + 𝐹) = 𝐾t − 𝐾r (3)

where 𝐾 + 𝐹 represents the total corona brightness. 𝑃K and 𝑃K+F refer to the degree of polarisation of
the 𝐾 corona and the total corona, respectively. Furthermore, 𝐾t and 𝐾r represent the tangential and radial
components of the 𝐾 corona brightness, respectively. Similar complex computations, as in Van de Hulst’s
method, were carried out during this study. First, the electron density of the corona was determined for the
𝐾t − 𝐾r component. Subsequently, the 𝐾t component was calculated through a reverse calculation of Van de
Hulst’s equation. Using these values of the 𝐾t − 𝐾r and 𝐾t components, the observational corona brightness
𝐾 was obtained (for detailed information, refer to article von Klüber 1958).

The new approach presented here has simpler steps compared to the methods mentioned above. The
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electron density of the corona is computed without time-consuming calculations, using only the luminosity
𝐾 and the degree of polarization of the corona. As an approximation for the calculations, two new electron
densities 𝑁t-r and 𝑁t are defined for the components 𝐾t − 𝐾r and 𝐾t, respectively.

Nowadays, as a result of the developing technological possibilities, different methods have been developed
to calculate coronal electron densities (Bemporad 2020; Del Zanna et al. 2023). However, these methods
are quite different from the method described here, in terms of both observation type and electron density
calculation technique. In addition, due to the lack of numerical results on the electron density for the
equatorial and polar regions in these studies, it was not possible to make a comparison with the results given
here.

The van de Hulst approach to determining electron density is concisely outlined in Section 2. A full
explanation of about new approximation is given in Section 3. Subsequently, Section 4 presents the validation
of the new method utilizing model values from Table 5A in van de Hulst’s article. In Section 5, an instance
of the new method’s application is showcased, featuring the numerical values acquired during the full solar
eclipse on the 29th of March, 2006. The Discussion section concludes the article by detailing the benefits
and advantages of the novel methodology.

2. VAN DE HULST’S METHOD FOR CALCULATING THE ELECTRON DENSITY

The content of this section is a brief overview of the author’s original article, providing only a basic outline
of the method. For more comprehensive information, it is advisable to refer to van de Hulst (1950). Most of
the explanations given here, such as formulae and figures, are also necessary for a better understanding of
the new approach presented in the following section.

The observed brightness of the corona is assumed to be the light scattered by the free electrons (Schuster
1879; Baumbach 1937). Therefore, this brightness should be directly proportional to the density of electrons
in the corona. In order to visualise this scenario, consider a single ray of light hitting a vibrating electron
(at point P) and reflecting in the direction of the observer (Figure 2). Here, 𝑟 and 𝑥 represent the actual
distance and projected distance of the light from the centre of the disc, respectively, whilst 𝜃 denotes the
angle separating the incoming light direction and the line of sight. Applying the formula presented by van
de Hulst (1950), the total intensity of the light scattered per second per unit solid angle by a column with a
cross-section of 1 cm2 is determined using

𝐾 (𝑥) = 𝐶
∞∫
𝑥

𝑁 (𝑟)
{(

2 − 𝑥2

𝑟2

)
𝐴(𝑟) + 𝑥

2

𝑟2 𝐵(𝑟)
}

𝑟𝑑𝑟
√
𝑟2 − 𝑥2

(4)

the equations below are expressed in terms of the tangential and radial components of this reflected light,

𝐾t(𝑥) = 𝐶
∞∫
𝑥

𝑁 (𝑟)𝐴(𝑟) 𝑟𝑑𝑟
√
𝑟2 − 𝑥2

𝐾t(𝑥) − 𝐾r(𝑥) = 𝐶
∞∫
𝑥

𝑁 (𝑟)
{
𝐴(𝑟) − 𝐵(𝑟)

}
𝑥2𝑑𝑟

𝑟
√
𝑟2 − 𝑥2

(5)

where 𝐴 and 𝐵 represent the lengths of semi-major and semi-minor axis of the vibration ellipsoid, respectively.
The constant C is equal to 3/4 𝑅⊙𝜎 = 3.44 × 10−14cm3, where 𝑅⊙ (= 6.96 × 1010cm) represents the solar
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Figure 2. Geometrical representation of both the scattered light incident on a vibrating electron and its intensity components (reconstructed from
van de Hulst 1950).

radius, and 𝜎 (= 0.66×10−24cm2) is the electron scattering cross-section. The primary issue here is to divide
the known 𝐾 (𝑥) intensity into two parts 𝐾t(𝑥) and 𝐾r(𝑥), and solve the integrals in such a way that both
equations produce the same electron density 𝑁 (𝑟). van de Hulst originally defined the coronal brightness
components 𝐾t(𝑟) and 𝐾t(𝑟) − 𝐾r(𝑟) through the use of coronal intensity 𝐾 (𝑥) and its model polarization
degree 𝑝(𝑥) as

𝐾t(𝑥) = 1/2[1 + 𝑝(𝑥)]𝐾 (𝑥) (6)

𝐾t(𝑥) − 𝐾r(𝑥) = 𝑝(𝑥)𝐾 (𝑥) (7)

This can also be expressed as a power series in the form of

𝐾t(𝑥) =
∑︁
𝑠

ℎ𝑠 𝑥
−𝑠 (8)

𝐾t(𝑥) − 𝐾r(𝑥) =
∑︁
𝑠

𝑘𝑠 𝑥
−𝑠 (9)

where
∑
𝑠 ℎ𝑠 𝑥

−𝑠 represents with three elements, namely A x−𝑎 + B x−𝑏 + C x−𝑐. van de Hulst then made
another approach and assumed that the solution of integrals given in Equation 5 was of the following form;

𝑟 𝐶 𝑁 (𝑟) 𝐴(𝑟) =
∑︁
𝑠

ℎ𝑠

𝑎-1
𝑟−𝑠 = 𝐾t(𝑟) (10)

𝑟 𝐶 𝑁 (𝑟)
{
𝐴(𝑟) − 𝐵(𝑟)

}
=

∑︁
𝑠

𝑘𝑠

𝑎s+1
𝑟−𝑠 = 𝐾t(𝑟) − 𝐾r(𝑟) (11)

where

𝑎s =

𝜋/2∫
0

sin𝑛 𝜃 𝑑𝜃 =
𝜋

2𝑛+1
𝑛!

{(𝑛/2)!}2 (12)

The electron densities can now be calculated from Equations 10 and 11. Firstly, the coefficients ℎs, 𝑘s and
𝑠 of Equations 8 and 9 are obtained by making polynomial fit to the calculated values of Equations 6 and
7 separately. Then, the right-hand sides of Equations 10 and 11 are calculated respectively by using a new
polynomial function formed with these coefficients. 𝑟 , C, 𝐴(𝑟) and 𝐵(𝑟) are precomputable values in this
approach (refer to van de Hulst (1950)’s article for calculation of these values). At this point, the calculated
electron densities 𝑁 (𝑟) in both Equations 10 and 11 must show the same value. If not, a method of successive
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approximations is used, replacing both 𝐾t(𝑟) and 𝐾t(𝑟) − 𝐾r(𝑟) by a reduction as small as

𝐾t(𝑟) =
{
1 + 𝜖 𝑝

}
𝐾

′
t (13)

𝐾t(𝑟) − 𝐾r(𝑟) =
{
1 + 𝜖 (1 + 𝑝)

}
(𝐾 ′

t − 𝐾
′
r ) (14)

where 𝜖 is a value not exceeding ±0.05. 𝐾 ′
t and 𝐾 ′

t −𝐾
′
r are pre-computed values of 𝐾t(𝑟) and 𝐾t(𝑟) −𝐾r(𝑟).

These computations are repeated, altering 𝜖 in each iteration, until both 𝐾t(𝑟) and 𝐾t(𝑟) − 𝐾r(𝑟) show the
same electron density in Equation 10 and 11. Although van de Hulst has achieved satisfactory results for the
electron densities of the model corona using this methodology, its practical application is rather challenging
and requires multiple attempts of unspecified numbers.

3. NEW APPROACH FOR CORONAL ELECTRON DENSITY

The values of 𝐾t(𝑥) and 𝐾t(𝑥) − 𝐾r(𝑥) computed in Equations 6 and 7 are numerically different from each
other. Thus, this difference should also be valid for Equations 10 and 11. Therefore, the electron density
𝑁 (𝑟) in each equation must be different as well. At this point, as a novel approach, the value of 𝑁 (𝑟) in each
equation is given a different nomenclature, defined as

𝑁t(𝑟) =
1
𝑟 C

𝐾t(𝑟)
𝐴(𝑟) (15)

𝑁t-r(𝑟) =
1
𝑟 C

𝐾t(𝑟) − 𝐾r(𝑟)
𝐴(𝑟) − 𝐵(𝑟) (16)

where 𝑁t(𝑟) represents the electron density for 𝐾t(𝑟) and 𝑁t-r(𝑟) represents 𝐾t(𝑟) − 𝐾r(𝑟). On the other
hand, by eliminating the 𝑝(𝑥)𝐾 (𝑥) values in Equations 6 and 7, the corona intensity 𝐾 (𝑥) can be expressed
in terms of 𝐾t(𝑥) and 𝐾t(𝑥) − 𝐾r(𝑥) as

𝐾t + 𝐾r = 𝐾 = 2𝐾t − (𝐾t − 𝐾r) (17)

Considering Equation 4 or Equations 10 and 11, the corona intensity 𝐾 (𝑟) is linearly proportional to the
electron density 𝑁 (𝑟). Therefore, any valid conclusion drawn between the components of the 𝐾 (𝑟) corona
(Equation 17) can also be drawn between the components of the electron density (Equations 15 and 16).
Accordingly, the electron density 𝑁 can be expressed in a similar manner as

𝑁 = 2 𝑁t − 𝑁t - r (18)

With this newly derived equation, it is now possible to calculate the electron density for a known 𝐾 (𝑥)
intensity using only the values of the 𝐾t(𝑟) and 𝐾t(𝑟) − 𝐾r(𝑟) components.

4. VALIDATING THE NEW APPROACH

The newly developed method was tested using the 𝐾 corona brightness and the polarization degree values
of the van de Hulst model as an observational corona values. The model corona values such as 𝐾t + 𝐾r, 𝐾t

and 𝐾t −𝐾r are taken from Table 5A in van de Hulst (1950)’s article. First, the polynomial coefficients ℎs, 𝑘s

and 𝑠 in Equations 8 and 9 were obtained by fitting a separate curve to the brightness values 𝐾t and 𝐾t − 𝐾r.
Then, new polynomial functions are created using these new coefficients produced by ℎs/𝑎s-1 and 𝑘s/𝑎s+1

(shown in Equation 10 and 11). These new functions are referred to as “generated functions” (GFs), and are

5



H. Çakmak

represented as

𝑓 (𝐾t − 𝐾r) =
∑︁
𝑠

𝑘s
𝑎s+1

𝑟 -s and 𝑓 (𝐾t) =
∑︁
𝑠

ℎs
𝑎s-1

𝑟 -s (19)

After calculating the electron densities 𝑁t and 𝑁t-r for the brightnesses 𝐾t and 𝐾t − 𝐾r using Equations 15
and 16, the total electron density is determined by combining these values with Equation 18. The results
obtained for the equatorial region of van de Hulst model are shown in Table 1. The 𝐾 corona brightness
values of the minimum type model are shown on the left side of the table. Also, the coefficients (A, B, C,
a, b and c) of the fitted function for each component are listed under its column at the left-bottom side. For
the fitting process, a three-element polynomial is employed, given by (A 𝑟 -a + B 𝑟 -b + C 𝑟 -c). Furthermore,
values for 𝑎s+1 and 𝑎s-1, calculated using Equation 12 with 𝑎, 𝑏 and 𝑐 coefficients, are listed at bottom of
the left side. The computed values of GFs 𝑓 (𝐾t) and 𝑓 (𝐾t − 𝐾r) are presented in the first two columns of
the right side of Table 1 and the coefficients utilized to construct these functions are listed underneath these
values. The calculated electron densities 𝑁t and 𝑁t-r, and the total electron density 𝑁 are exhibited in their
corresponding columns on the right side of Table 1.

The electron density calculations were repeated for the polar region of the van de Hulst model, resulting
in the same level of agreement. Table 3 presents the electron density values attained by the new method for
both the equatorial and polar regions of the minimum type corona, alongside the values obtained by van de
Hulst (1950). From the table, it can be seen that the new method’s values match closely with those of the
van de Hulst model for both the equatorial and polar regions. A similar comparison was made using the 𝐾
corona values and polarization degree values of the Allen (1973). The same agreement was also achieved
for these values. The computed values of the new method for Allen (1973) values are shown in Table 2 and
Table 4, respectively.

Table 1. Calculation results for the equatorial region of the minimum-type corona of van de Hulst (1950) computed using the new approach.
Brightness is in units of 10−8𝐼⊙ , and electron density is in units of 106 cm−3.

𝒓 𝑲 𝑷K 𝑲t − 𝑲r 𝑲t 𝒇 (𝑲t − 𝑲r) 𝒇 (𝑲t) 𝑵t-r 𝑵t 𝑵

1.0 300.40 0.18 54.40 177.40 104.03 470.10 239.66 226.68 213.7
1.03 202.80 0.24 48.00 125.40 111.69 328.27 171.88 176.05 180.2
1.06 141.30 0.28 39.10 90.20 94.66 230.57 128.04 130.48 132.9
1.1 91.10 0.32 29.30 60.20 70.99 148.07 87.24 88.68 90.1
1.2 37.10 0.41 15.14 26.12 35.53 58.50 39.40 39.18 38.9
1.3 18.50 0.46 8.56 13.53 19.72 28.63 21.28 21.02 20.8
1.5 6.20 0.54 3.34 4.77 7.46 9.69 8.24 8.29 8.3
1.7 2.57 0.59 1.51 2.04 3.33 4.06 3.90 3.96 4.0
2.0 0.85 0.62 0.53 0.69 1.19 1.35 1.55 1.55 1.5
2.6 0.16 0.66 0.11 0.13 0.23 0.23 0.37 0.34 0.3
3.0 0.07 0.65 0.05 0.06 0.09 0.09 0.17 0.15 0.1
4.0 0.02 0.61 0.01 0.02 0.02 0.01 0.04 0.03 0.02

𝒌s 𝒉s 𝒌s/𝒂s+1 𝒉s/𝒂s-1
A 40.50 71.98 90.03 143.68
B 26.66 121.28 83.22 398.10
C -12.77 -15.86 -69.22 -71.68
a 6.25 6.74 6.25 6.74
b 13.80 17.42 13.80 17.42
c 44.63 32.58 44.63 32.58

𝒂s+1 𝒂s-1
for a 0.4499 0.5010
for b 0.3203 0.3046
for c 0.1845 0.2213
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Table 2. Calculation results for the equatorial region of the minimum-type corona of Allen (1973) computed using the new approach. Brightness is
in units of 10−8𝐼⊙ , and electron density is in units of 106 cm−3.

𝒓 𝑲 𝑷K 𝑲t − 𝑲r 𝑲t 𝒇 (𝑲t − 𝑲r) 𝒇 (𝑲t) 𝑵t-r 𝑵t 𝑵

1.01 269.15 0.22 58.41 163.78 175.31 532.27 317.89 271.40 224.9
1.03 199.53 0.23 46.09 122.81 115.52 333.43 177.77 178.82 179.9
1.06 144.54 0.25 36.28 90.41 86.75 226.47 117.34 128.16 139.0
1.1 102.33 0.28 28.24 65.29 65.84 157.67 80.91 94.43 107.9
1.2 44.67 0.33 14.74 29.70 35.16 71.74 39.00 48.05 57.1
1.4 12.02 0.40 4.85 8.43 11.59 18.79 12.55 14.95 17.3
1.6 4.68 0.42 1.97 3.33 4.43 6.43 5.03 5.89 6.7
1.8 2.00 0.39 0.77 1.38 1.90 2.77 2.30 2.86 3.4
2.0 1.00 0.34 0.34 0.67 0.89 1.43 1.16 1.64 2.1
2.2 0.60 0.30 0.18 0.39 0.45 0.85 0.62 1.07 1.5
2.5 0.27 0.26 0.07 0.17 0.18 0.46 0.28 0.66 1.0
3.0 0.10 0.20 0.02 0.06 0.05 0.21 0.09 0.37 0.7
4.0 0.03 0.13 0.004 0.02 0.01 0.07 0.01 0.17 0.3

Table 3. Comparison of electron densities obtained using the new method
with those from the van de Hulst (1950) values. Electron density is in
units of 106 cm−3.

(a) van de Hulst 𝑁 This study 𝑁
𝒓 Equator Polar Equator Polar
1.0 227.0 174.0 213.7 170.3
1.03 178.0 127.0 180.2 127.0
1.06 132.0 87.2 132.9 86.9
1.1 90.0 53.2 90.1 52.9
1.2 39.8 16.3 39.0 15.8
1.3 21.2 5.98 20.8 5.8
1.5 8.3 1.4 8.3 1.5
1.7 4.0 0.542 4.0 0.620
2.0 1.580 0.196 1.544 0.199
2.6 0.374 0.040 0.317 0.030
3.0 0.176 0.017 0.131 0.010
4.0 0.050 0.004 0.021 0.001

Table 4. Comparison of electron densities obtained using the new method
with those from the Allen (1973) values. Electron density is in units of
106 cm−3.

(b) Allen 𝑁 This study 𝑁
𝒓 Equator Polar Equator Polar
1.01 251.2 199.5 224.9 215.4
1.03 177.8 131.8 179.9 150.1
1.06 125.9 95.5 139.0 87.7
1.1 91.2 64.6 107.9 57.6
1.2 46.8 19.9 57.1 26.2
1.4 15.1 4.4 17.3 3.4
1.6 6.8 1.3 6.7 0.5
1.8 3.6 0.6 3.4 0.1
2.0 2.0 0.3 2.1 0.06
2.2 1.3 0.2 1.5 0.04
2.5 0.6 0.1 1.0 0.02
3.0 0.3 0.05 0.7 0.01
4.0 0.1 0.02 0.3 0.001

5. CALCULATED ELECTRON DENSITIES OF THE 2006 SOLAR ECLIPSE

The newly developed method was utilized to compute the electron density of the solar corona as observed
during the total eclipse on March 29, 2006, in Türkiye. This eclipse observation was carried out with the
8-inch Meade telescope by the staff of the Astronomy and Space Sciences Department of Istanbul University
in the Manavgat district of Antalya. During the eclipse event, observations of white light polarization were
conducted, and eclipse photographs were taken at three different polarization angles, 0◦, 60◦, and 120◦. A
total of 15 photos were taken during totality with an interval of 3m 30s between 11h 55s 10m and 11h 58s

40m UT. Five different exposure times were used in these shoots; 1/2, 1/4, 1/30, 1/60, and 1/125 second. In
addition, images of the solar disc were taken at different diaphragm openings before the eclipse for brightness
calibration and exposure times used here were the same as those used during the eclipse. After performing
brightness calibration and computation of Stokes parameters using polarization images, the total corona
brightness (𝐾 + 𝐹) and polarization degree (𝑃K+F) of the 2006 eclipse obtained by considering the sky with
instrumental contribution and active chromospheric regions (see Appendix A for details). The isophote plots
of total corona brightness and its polarization degree are shown separately in Figure 3. The numbers on the
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Figure 3. (a) Isophotes of total corona brightness (values are in units of 10−9𝐼⊙) and (b) isolines of polarization degree (values are in percent) of
the 29 March 2006 solar eclipse.

isophote lines are in units of 10−9𝐼⊙ for the total brightness, and in percent for the polarization degree. The
values obtained for both parameters at specific distances from the solar disc are given in Table 5.

The 𝐾 corona brightness values are obtained by subtracting 𝐹 corona model values of van de Hulst (1950)
from the observed 𝐾 + 𝐹 total brightness values. This process has been carried out with the assumption that
𝐹 corona does not change much from one solar cycle to another (Kulĳanishvili & Kapanadze 2005; Morgan
& Habbal 2007). Also, the polarization degree 𝑃K of the 𝐾 corona is determined using the equation of von
Klüber (1958), which is given by

𝑃K = 𝑃K+F

(
𝐾 + 𝐹
𝐾

)
. (20)

For this eclipse, the electron densities in the equatorial and polar regions were calculated using the 𝐾 corona
brightness and its polarization degree. The obtained results are shown in Table 6A for the equatorial region
and Table 6B for the polar region. The calculated electron densities of the equatorial (black circle) and
polar (black triangle) regions are shown in Figure 4 in comparison with the observational values of Newkirk
(1967) and Allen (1973) and model electron density values of van de Hulst (1950) and Saito et al. (1970). It
is clear from the figure that the electron density values observed in the 2006 eclipse are in good agreement
with comparison values given. Any discrepancies between the observed and model values may be due to
the asymmetric brightness distribution caused by the asymmetric distribution of the solar material. This is
clearly illustrated in Figure 3a, where the equatorial and polar intensity distributions are compared.

6. DISCUSSION

The main challenge of the newly developed method is to determine the optimal coefficients (ℎs, 𝑘s, 𝑠) of the
power function in transition from Equations 8–9 to Equations 10–11. This involves a demanding phase of
performing numerous fitting curve tests to determine the appropriate coefficients of the three- or two-element
power function. Using these coefficients, the observational values of 𝐾t(𝑥) and 𝐾t(𝑥) −𝐾r(𝑥), which depend
on the projection distance, are converted into the values of 𝐾t(𝑟) and 𝐾t(𝑟) − 𝐾r(𝑟), which depend on the
true distance.

During the fitting process, it is crucial to ensure that the fitted curve passes through the overall distribution
of the observation points. Attempting to fit the curve close to every observation point is generally ineffective
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Figure 4. Comparison of electron densities in the
equatorial and polar regions during the solar eclipse
on 29 March 2006 with selected observational data
and model values of van de Hulst (1950) and Saito
et al. (1970)

Table 5. Observed total corona brightness 𝐾 + 𝐹 and polarization degree 𝑃K+F values of 29
March 2006 eclipse.

𝐾 + 𝐹 corona (×10−9𝐼⊙) 𝑃K+F (%)
𝒓 Equa. Polar Equa. Polar

1.10 1311 648 19.0 32.4
1.15 1046 364 26.7 36.3
1.20 782 201 36.4 33.2
1.25 513 128 44.7 25.9
1.30 293 90 46.1 19.6
1.35 180 70 39.8 15.0
1.40 125 57 32.4 13.9
1.45 94 48 26.8 12.3
1.50 74 42 22.5 11.6
1.55 61 38 19.4 10.7
1.60 52 – 17.1 –
1.65 45 – 15.8 –
1.70 40 – 14.6 –

Table 6. Values used for electron density calculation (left side), and results from Eclipse 2006 (right side). 𝐾 values are in units of 10−9𝐼⊙ , and 𝑃
is in percent.

𝐴− equatorial region
𝒓 𝑲 𝑷K 𝑲t − 𝑲r 𝑲t 𝒇 (𝑲t − 𝑲r) 𝒇 (𝑲t) 𝑵t-r 𝑵t 𝑵equ

1.10 158.6 0.196 31.1 94.8 160.5 269.3 197.2 161.3 125.4
1.15 96.6 0.285 27.5 62.0 103.4 171.5 118.9 109.0 99.0
1.20 72.6 0.403 28.9 50.2 68.0 111.4 75.4 74.6 73.9
1.25 46.0 0.517 23.8 34.9 45.5 73.7 49.5 51.8 54.1
1.30 24.9 0.558 13.9 19.4 30.9 49.6 33.4 36.4 39.5
1.35 14.4 0.506 7.3 10.8 21.3 33.9 23.0 26.0 28.9
1.40 9.4 0.433 4.1 6.7 14.9 23.6 16.2 18.7 21.3
1.45 6.6 0.376 2.5 4.6 10.6 16.6 11.6 13.7 15.8
1.50 5.0 0.330 1.6 3.3 7.6 11.8 8.4 10.1 11.8
1.55 3.9 0.298 1.2 2.6 5.5 8.5 6.2 7.5 8.9
1.60 3.2 0.274 0.9 2.1 4.0 6.2 4.6 5.7 6.8
1.65 2.4 0.263 0.6 1.5 3.0 4.6 3.5 4.3 5.2
1.70 1.9 0.249 0.5 1.2 2.2 3.4 2.6 3.3 4.0

𝐵− polar region
𝒓 𝑲 𝑷K 𝑲t − 𝑲r 𝑲t 𝒇 (𝑲t − 𝑲r) 𝒇 (𝑲t) 𝑵t-r 𝑵t 𝑵pol

1.10 54.8 0.395 21.6 38.2 76.5 115.4 94.0 69.1 44.2
1.15 28.5 0.425 12.1 20.3 36.0 58.0 41.4 36.9 32.4
1.20 13.7 0.382 5.2 9.4 18.3 30.6 20.3 20.5 20.7
1.25 7.6 0.316 2.4 5.0 10.0 16.9 10.9 11.9 12.8
1.30 4.7 0.275 1.3 3.0 5.9 9.8 6.4 7.2 8.0
1.35 3.3 0.252 0.8 2.1 3.7 5.9 4.0 4.5 5.1
1.40 2.5 0.240 0.6 1.6 2.4 3.7 2.6 3.0 3.3
1.45 2.1 0.258 0.5 1.3 1.7 2.5 1.8 2.0 2.2
1.50 1.0 0.287 0.3 0.7 1.2 1.7 1.3 1.4 1.6
1.55 0.5 0.266 0.1 0.3 0.9 1.2 1.0 1.0 1.1
1.60 0.3 0.264 0.1 0.2 0.6 0.9 0.7 0.8 0.8

(see Figure 5a) due to inevitable observational errors that cause scattering in the values. Thus, a solution
should be devised for the general trend of these observation points (see Figure 5b). There are two possible

9
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Figure 5. (a) Power function curve fitted without any constraints, (b) power function curve fitted with delimited coefficients, (c) screenshot of a
program showing parameters utilized to fit the power function curve under different configurations.

techniques to accomplish this task. The first option involves fitting a two-element power function curve to the
values of a curve obtained by fitting a polynomial equation with one element or six or more elements. The
second option involves fitting a power function curve with restricted parameters where each coefficient has a
boundary between specified values (refer to Figure 5c). The second method, which is preferred in this study,
provides a straightforward and fulfilling solution without requiring additional experimentation. However, it
can be challenging to adjust the limits for limiting coefficients in a consistent manner across different eclipse
data. Nevertheless, this is a common occurrence, as each eclipse typically has a unique distribution with its
own distinct characteristics. Once the coefficients for the power function are determined for the observational
values, generating GFs and obtaining the electron density become straightforward steps in this method.

When examining the test results of the electron density for van de Hulst (1950) obtained by the newly
introduced method shown in Table 3, it is evident that the compared values are in very good agreement.
This fact is more apparent in Figure 6a, which confirms the accuracy level of the new method. The similar
agreement is also seen for the values of Allen (1973) given in Tables 2 and 4, respectively. As highlighted in
Figure 6, the electron density values of both the model and the novel method are mainly distributed along the
line. When checked for compatibility in individual regions, the coefficient of determination 𝑅2 is 0.9974 for
the equatorial region and 0.9996 for the polar region of van de Hulst (1950), while 0.9845 for the equatorial
region and 0.9853 for the polar region of Allen (1973). Although the results from Eclipse 2006 are quite
satisfactory, It would be better to retest this new method with the data from other eclipse observations,
especially with the other eclipse results from other researchers who have their own observational electron
density data. Thus, the accuracy of the new method will be confirmed by finding similar or conclusive results
for these data. For example, when the new method was tested with van de Hulst model values in Section 4,
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Figure 6. Comparison of electron density values from (a) van de Hulst’s model and (b) Allen’s values with those derived from this study. The plots
below illustrate the numerical disparity between these two approaches.

satisfactory electron density results were obtained. Thus, the probability of finding similar consistent results
with other observational data is quite high. This should be examined, particularly by other researchers who
have measured electron densities using their methods. In order to check the new approach with different
observational values, it is intended to contact more than one researcher investigating this topic in the future.
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APPENDIX A: CALCULATION PROCEDURES OF THE K CORONA BRIGHTNESS

First of all, as a reminder, all procedures relevant to this section are given comprehensively in Çakmak
(2017)’s article. Please review this article for more information. A very brief summary of the general steps
of this procedure is given verbally here. In order to determine the brightness of the 𝐾 corona, a brightness
calibration must first be performed. This requires taking images at different diaphragm openings with the
same exposure times as used for polarized images. Once the intensity calibration function (defined in Çakmak
2017) has been obtained by using these solar disc images, the brightness of the corona in all polarized images
is calculated by normalizing their intensity. Then, the average corona brightness values are determined for
the polar region between latitudes 0◦–30◦ and for the equatorial region between latitudes 40◦–90◦, separately
(Figure A1). At this stage, regions with chromospheric structure were excluded from the calculation, taking
into account their distance range from the Sun’s surface, to avoid erroneous increases in brightness.
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Figure A1. The latitude ranges for the polar and equatorial regions used in a single quadrant. Distances to the solar disc are given in units of solar
radius.

APPENDIX B: EXPLANATIONS ABOUT LATITUDE-DEPENDENT CORONAL BRIGHTNESS
CALCULATION

A very brief summary of the explanations on this subject from the article of Saito et al. (1970) is given here.
Please refer to that article for more information. To describe the brightness of an arbitrary point in the solar
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corona, the graphical situation shown in Figure B1 is considered. In this figure, 𝑃 is the point in question, 𝑃′

is the projection of 𝑃 on the celestial plane, 𝜙 is the heliographic latitude of 𝑃, 𝜙0 is the projected angle of
on the celestial plane, 𝜃 is angle 𝑂𝑃𝑃′ and 𝑧 is the line-of-sight length.
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Figure B1. Latitude-dependent diagram of an arbitrary point in the solar corona (reconstructed from Saito et al. 1970).

In that paper, the author obtained the following equations from Equation 5

𝐼t − 𝐼r = 𝐶 2𝑦
𝜋/2∫
0
𝑁 (𝑟, ϕ) (𝐴 − 𝐵)dθ

𝐼t = 𝐶 2𝑦
𝜋/2∫
0
𝑁 (𝑟, ϕ) (𝐴) dθ

sin2 θ

(B1)

under certain assumptions with

sin ϕ = sin ϕ0 sin θ , 𝑟 sin θ = 𝑦

𝑁 =
𝑁0
𝑅𝑛 = 𝑁0 𝑘

𝑛 sin𝑛 θ , 𝑁 (𝑟, 𝜙) = ∑
𝑁0,𝑖

1− 𝑓𝑖 sin𝑠𝑖 ϕ

𝑟𝑛𝑖

where 𝑘 is the modulus of the integrals and a number between 0 and 1, 𝑛 is a real number, 𝑓𝑖 and 𝑠𝑖

are positive real number. As a result of arranging the Equation B1, the following formula is obtained for
latitude-dependent 𝐾 corona brightness.

(𝐼t ± 𝐼r)ϕ0 = (𝐼t ± 𝐼r)equ −
sin ϕ0
𝑘

0.5 × 5.365 × 10−6(𝐼t ± 𝐼r)17

+ sin ϕ0
𝑘

0.95 × 2.752 × 10−6(𝐼t ± 𝐼r)7

+ sin0.5 ϕ0

𝑘0.5 1.0 × 0.0436 × 10−6(𝐼t ± 𝐼r)3

(B2)

This equation can be expressed as

𝑁e(𝑟, ϕ) =
3.09 × 108

𝑟16
(
1 − 0.5 sinϕ

)
+ 1.58 × 108

r6
(
1 − 0.95 𝑠𝑖𝑛ϕ

)
(B3)

+ 0.0251 × 108

r2.5
(
1 − 1.0 sin0.5ϕ

)
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Using this last equation, the coronal electron density can be visualized as shown Figure B2. As can be
seen from Equation B3, different profiles for the coronal electron density can be produced by changing the
coefficients of sinϕ’s shown in red.
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Figure B2. Iso-density curves of electrons in the 𝐾 corona computed with the Equation B3 (reconstructed from Saito et al. 1970).
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